
Software

Crisis 2.0
Baldur Bjarnason

An essay on our industry’s core expertise: failed software

projects.

The First

Software Crisis

Back in the early days of computing, we were, as always, extremely

bad at making software. Except it was fine as most computers were

practically custom-made to their purpose and only had the power to

be able to tackle relatively simple problems. Simple problems meant

simple software. This didn’t last long, Moore’s law being a more con‐

crete reality back then, computers steadily became more powerful

which led them to being applied to more complex problems.

This did not go well.

By 1968, this was a full-blown crisis:

There is a widening gap between ambitions and

achievements in software engineering. This gap ap‐

pears in several dimensions: between promises to

users and performance achieved by software, between

what seems to be ultimately possible and what is

achievable now and between estimates of software

costs and expenditures. The gap is arising at a time

when the consequences of software failure in all its as‐

pects are becoming increasingly serious. Particularly

alarming is the seemingly unavoidable fallibility of

large software, since a malfunction in an advanced

hardware-software system can be a matter of life and

death, not only for individuals, but also for vehicles

carrying hundreds of people and ultimately for na‐

tions as well.

David Gries and A.G. Fraser, from

Once the field, in general, had accepted that there was indeed a crisis

they could begin the work addressing it.

Which they did up to a point. Fred Brooks wrote The Mythical Man-

Month in 1975. Edsger W. Dijkstra and others worked hard to improve

the craft of programming. Douglas Engelbart pioneered UI/UX re‐

search at the in the 60s. Alan Kay and

Software Engineering:

Report of a conference sponsored by the NATO Science

Committee

Augmentation Research Center

The First Software Crisis

3

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF
https://en.wikipedia.org/wiki/Augmentation_Research_Center

others took over the UI research baton at Xerox Parc in the 70s. This

led directly to the Mac, Hypercard, the mainstreaming of hypertext,

NextSTEP and the web.

Software development had a clear, upward arc. You could argue that

software in general still wasn’t good enough. But it seemed to be a

pragmatic inevitability that would at some point be just that: good

enough. Even software that was objectively bad in multiple dimen‐

sions like Windows 95 or 98 was a clear improvement on what came

before. To paraphrase : good software was already

here, it just wasn’t evenly distributed yet.

Most software was still bad. Most UX designs were still horrible. Bug-

free software still seemed to be an elusive, mythical beast. But you

could look at the industry and think to yourself that this was going to

get fixed. The industry was in the process of being ‘modernised’,

turned into a proper field of practice.

Then, in 2001, ‘Agile’ stepped in with the . Finally,

hopefully, at last, good software development was going to be pop‐

ularised.

William Gibson

Agile Manifesto

Software Crisis 2.0

4

https://www.goodreads.com/quotes/681-the-future-is-already-here-it-s-just-not-evenly
https://agilemanifesto.org/

Are Things

Improving?

Twenty years have passed and you can no longer plausibly claim that

software is improving.

If there is one universal truth in software it’s that there’s a lot of bad

software and failed software projects. If you’ve worked in the industry

for more than just a few years, a minority of the software you’ve

worked on will have been a success. If it wasn’t buggy, it’ll have been

over budget. If it wasn’t over budget, it’ll have been late. If it wasn’t

late then it probably didn’t fulfil all of the set requirements or features

you had planned. If it fulfilled the requirements, you’ll have found out

that the requirements were utterly wrong.

Most of the software projects we’ve worked on are failures at some

point. A few recover. Many don’t. This is the norm.

As an industry, we’re really bad at what we do and we all know it.

Thus is still in effect: “If builders built buildings the way

programmers wrote programs, then the first woodpecker that came along

would destroy civilization.”

You often see people cite a statistic like “90% of software projects fail!”

Or, “60% of all software projects fail!”. It’s useful when you want to

dismiss some standard practice in the industry without making an ac‐

tual argument about that practice. If somebody asks you to back that

up with a reference, just handwave it away. Everybody knows this.

Which is usually a very reliable indicator that the stat is a made-up

urban legend.

Except, in this case, it isn’t. Not only are both of the percentage stats

backed by research, but they both also come from the same ongoing

research.

Weinberg’s Law

Software Crisis 2.0

6

https://quoteinvestigator.com/2019/09/19/woodpecker/

The Chaos Report

The Standish Group has been writing reports on the prevalence of

software project failures since the 90s. They call them Chaos Reports.

They have a database of participating companies, with a decent range

in size from small to huge. They survey the companies regularly and

collect stats. It isn’t perfect and it probably doesn’t reflect the industry

at large. But that’s fine because the industry proper is almost certainly

much worse. It has the benefit of being done by the same people using

the same overall methodology over an extended period. It’s also the

only real long-term research we got on the subject.

The 90% stat originally comes from their 1995 report:

Only 9% of their projects come in on-time and on-budget. And,

even when these projects are completed, many are no more than a

mere shadow of their original specification requirements.

()

Not only is the 90% stat marginally understating the scope of software

failure, once you factor in requirement failures the rate of success

drops even further. The industry knew what good software develop‐

ment looked like, but it wasn’t the norm.

The 60% stat, however, also comes from the Standish Group, just a

much later report.

2011 2012 2013 2014 2015

SUCCESSFUL 39% 37% 41% 36% 36%

CHALLENGED 39% 46% 40% 47% 45%

FAILED 22% 17% 19% 17% 19%

The Chaos Report 2015 traditional resolution for all projects

Their 2015 report shows that the success rate for a software project is

now in the 36-39% range, giving us a 61-64% unsuccessful rate which

sounds much nicer than 90%. Also, the research is now more repres‐

entative of the value delivered as it shows that around 40% of the pro‐

Standish Group – Chaos Report

Software Crisis 2.0

8

https://www.projectsmart.co.uk/white-papers/chaos-report.pdf

jects delivered results in some way despite being unsuccessful. This

statistic is in the same ballpark as that shown in other research stud‐

ies, .

—We’ve gotten better at software development, yay agile!

Yes and no. These stats only measure whether the project is on time,

on budget, and on target. This reflects our experience as developers.

While a good portion of what we work on is unsuccessful by any reas‐

onable measure (business failure, unusable, poor software quality, in‐

accessible, poor performance, negative return on investment, tech‐

nical debt, septic code etc.) we do generally manage to get paid and de‐

liver what was asked. For the most part. It isn’t our fault that man‐

agers keep asking for dumb requirements they haven’t backed with

research. Software projects do tend to get delayed so a 40% success

rate sounds accurate and you can imagine that most of the ‘chal‐

lenged’ projects are just a bit late or just a bit over budget. It feels like

it reflects the state of the industry.

If you’re a software developer, that is. Sounds completely unreason‐

able to anybody who needs to use or rely on our crap.

This is why in 2015

. Now, to qualify as successful, a project needed to be on

time, on budget, and have a satisfactory result.

Uh, oh. Did a cold sweat just run down your back or was that just me?

—Satisfactory result? What has that got to do with software? That is not

something we do, dear sir! (Flounces off.)

2011 2012 2013 2014 2015

SUCCESSFUL 29% 27% 31% 28% 29%

CHALLENGED 49% 56% 50% 55% 52%

FAILED 22% 17% 19% 17% 19%

one of which in 2008 put the unsuccessful rate at 68%

the Standish Group changed their ‘resolution

definition’

The Chaos Report

9

https://www.zdnet.com/article/study-68-percent-of-it-projects-fail-6103001175/
https://standishgroup.com/sample_research_files/CHAOSReport2015-Final.pdf
https://standishgroup.com/sample_research_files/CHAOSReport2015-Final.pdf

The Chaos Report 2015 modern resolution for all projects

All the stats drop. Not by as much as you’d think. Which is good? We

still have about a 30% success rate.

That isn’t the full picture. The horror story reveals itself when you

break it down by project size.

SUCCESSFUL CHALLENGED FAILED TOTAL

Grand 6% 51% 43% 100%

Large 11% 59% 30% 100%

Medium 12% 62% 26% 100%

Moderate 24% 64% 12% 100%

Small 61% 32% 7% 100%

The Chaos Report 2015 resolution by project size

For medium, large, and grand projects, the success rate is only in the

6-12% range. For most project sizes that we are likely to deal with in

the industry, we’re back in “90% of all software projects fail” territory.

Even moderate projects (too big to be small, too small to be medium)

only succeed 24% of the time. The only reason the final number hovers

around 30% is that it turns out that we are damn good at making small

software projects: 61% are successful.

To refer to one of my favourite books on systems, The Systems Bible

by John Gall: “The larger the system, the greater the probability of

unexpected failure.” It should be surprising that the odds of failure

increase fast with software project size.

This would be fine, just make all the projects small, except we all

know that that’s often not possible. We are, generally, really really bad

at reducing scope. Everything escalates in software development. We

know no moderation and in node.js development, habitually add

thousands of dependencies right at the start.

Software Crisis 2.0

10

—We’re gonna need this. We’re gonna need that. And that. And that as

well. We’re gonna need all of this at some point. Might as well add it now.

We know it’s wrong. We have kind of figured out how to do this job.

We just lack the discipline to follow through. It’s also just a small part

of the picture. Some of what we have seen as progress in software de‐

velopment is more akin to stat manipulation. The state of a software

product, for example, isn’t reset at the end of every release. Over time,

your small projects start to feel less and less small.

I don’t know about you but this feels depressingly familiar. Since the

90s we’ve learned how to deliver what people ask for, but we remain

depressingly incapable of acting on that knowledge.

—Surely that’s somebody else’s problem, right? We deliver what we’re

asked, in the way management wants it done, and we’re going to get paid

whether it delivers any value to the organisation or not.

The Chaos Report

11

Vronsky, against his own will or wishes, followed her

lead, hoped too that something, apart from his own

action, would be sure to solve all difficulties.

Leo Tolstoy, Anna Karenina

Software Crisis 2.0

12

Something is

sure to solve all

difficulties

The true reason for the state of software and even knowledge work in

general: we, as a whole, don’t know the answers to even the most ba‐

sic questions:

What is good management?

How do we prevent bad software?

How do we prevent harmful software? Software that is harmful

to society, culture, the workforce, or the environment?

What is good software?

How do we recognise good software?

How do we develop a culture for talking about, analysing, and

enjoying well-made software?

Are we in a position where we can even tell whether our soft‐

ware is good or not?

Do we have any capacity for acknowledging that the quality of

our software is declining?

Or, not increasing when it should?

Are we capable of recognising when the process is serving the

product’s end-user?

Or, when it’s not?

These seem basic but that’s where we’re at as an industry: we do not

have answers to the most foundational questions of our work. Agile

hasn’t answered any of them, even though its various flavours have

tried. Like Vronsky in Anna Karenina, we’re waiting for somebody

else to solve all our difficulties.

Most people involved in software development don’t know what truly

good software looks like because they’ve only ever used mediocre or

awful software.

Most of those who make software don’t know what a sensible software

product development process looks like because they’ve never seen it

happen.

•

•

•

•

•

•

•

•

•

•

•

Software Crisis 2.0

14

Most of our managers know less about management theory, organisa‐

tional psychology, or even basic principles of collaboration than an

abusive high school gym teacher.

At least the abusive bastard wants to hurt us. The manager does it un‐

intentionally through ignorance or inexperience.

Something is sure to solve all difficulties

15

It always happened with Levin that when his first

shots were a failure he got hot and out of temper, and

shot badly the whole day. So it was that day. The snipe

showed themselves in numbers. They kept flying up

from just under the dogs, from under the sportsmen’s

legs, and Levin might have retrieved his ill luck. But

the more he shot, the more he felt disgraced in the

eyes of Veslovsky, who kept popping away merrily and

indiscriminately, killing nothing, and not in the

slightest abashed by his ill success. Levin, in feverish

haste, could not restrain himself, got more and more

out of temper, and ended by shooting almost without

a hope of hitting.

Leo Tolstoy, Anna Karenina

Software Crisis 2.0

16

Shooting without a

hope of hitting

It’s a miracle we ship anything at all, between the overwork, poor commu‐

nication, misguided research, and the rampant fad-seeking. Software is

born doomed and it’s a constant struggle to keep it alive.

All of our errors, mistakes, and misdirected obstinancy are all winding

paths to the same destination: we keep building software that people don’t

want to use. That’s our original sin. Sometimes they just don’t need it.

Sometimes it just doesn’t address a problem anybody has. Sometimes it’s

done in such a way that nobody wants to use it, even those who do need it.

The end is the same.

It’s tempting to look at the Chaos Report and conclude, as most of the agile

cosplay industry has done, that the key is to slice everything up into smal‐

ler slices. Behold! The two-week sprint, a salve for our wounds, saviour of

all our projects, a boon for all managers! A silver bullet, if you will. Because

there is such a thing.

Except, no. It only works to a degree. The short sprint model makes

scope creep harder but doesn’t prevent it and it doesn’t prevent cross-

sprint interdependencies. A lot of the time the sprint’s conclusion is

just punctuation, a little bit of breathing space between sentences,

and doesn’t work as a chapter break that concludes an idea while set‐

ting you up for the next one. Sprints can often serve to exacerbate

death marches by making a grand project’s feature production relent‐

less and never-ending.

Which, doesn’t work that well. Clearly. (Gestures wildly towards the

Chaos Report tables.)

Even done well, sprints don’t fix the problem as software is ongoing.

Your project state isn’t reset at the start of each sprint so you rarely get

the scope benefits of a small project. There will come a time that a

sprint will fail, badly. That’s just a fact of life. Sometimes things go

wrong. Instead of taking time to recover, fix what’s broken, figure out

what went wrong, most project leaders in software development will

do the absolute worst thing you can do under the circumstances: push

everybody a bit harder.

—Let’s catch up.

A sprint failed so you work just a little bit harder for a sprint or two,

just to catch up. Except everything just gets harder and the failures

start to cascade. Before you know it, the project is spiralling and

you’re on your way on a death march towards failure.

The manager will blame the staff, of course. They weren’t as good as we

thought. They made mistakes. They aren’t willing to put in the effort. They

gave us the wrong estimates. They keep adding new bugs and not fixing

old ones. They keep wasting precious time on procedural faff like types,

unit testing, and automation. The manager who doesn’t blame the

staff, who remembers Deming’s 95% rule (

), wouldn’t have made the mistake in the first

place, would have understood that a naive sprint format doesn’t have

the retrospective, analytical, and recovery features that the software

“95% of performance is gov‐

erned by the system”

Software Crisis 2.0

18

https://beyondcommandandcontrol.com/library/dr-demings-aphorisms/95-of-performance-is-governed-by-the-system/
https://beyondcommandandcontrol.com/library/dr-demings-aphorisms/95-of-performance-is-governed-by-the-system/

development process truly needs. So, you either need to bake those

into the process around the sprint, maybe add those as dedicated

sprints, or switch to another process entirely.

Instead, we march and, like Tolstoy’s author stand-in Levin, we

resign ourselves to shooting without a hope of hitting. Software de‐

velopment takes more time than most managers or even developers

appreciate. Time to be introspective. Time to be analytical. Time to recov‐

er. Time to be unfocused. Time, that cannot be made up by adding more

staff. As Frederick Brooks observed in 1975 in the Mythical Man-

Month, you can’t partition a twelve-month, single-developer software

project into neat units to be done by twelve developers in one month.

It isn’t enough to minimise the odds of failure for individual projects.

Software builds up to become complex systems, so you need to have

sensible ways to deal with failure modes. John Gall, The Systems

Bible: “The Fundamental Failure-Mode Theorem (F.F.T.): complex systems

usually operate in a failure mode.”

—That means that if we give ourselves more time, and dedicate specific

space towards recovery, analysis, and correction, we’re going to be fine?

The key is to do agile correctly, right?

—Right?

Something is sure to solve all difficulties

19

Vronsky, meanwhile, in spite of the complete realiza‐

tion of what he had so long desired, was not perfectly

happy. He soon felt that the realization of his desires

gave him no more than a grain of sand out of the

mountain of happiness he had expected. It showed

him the mistake men make in picturing to themselves

happiness as the realization of their desires.

Leo Tolstoy, Anna Karenina

Software Crisis 2.0

20

The realization of

desires

In established companies, the way you survive and advance your career is

to serve the organisation, not the product or the end-user. The work that

gets done is in service to the organisation itself. Sometimes that results in a

benefit to the end-user. Often it doesn’t because, again in Deming’s words:

. Or, if you prefer

: “the principal function of those executives is to provide themselves with

the quality of work life that they like and profit is simply a means.”

Everybody, including management, is in it for their career and both soft‐

ware failure and financial losses have surprisingly little effect on most

people’s prospects. Especially in the software industry. What harms your

career is going against the organisation, challenging the consensus, and

not being a team player. That shit gets around and gives you a bad reputa‐

tion because that’s what the organisation cares about.

Getting people to do the right thing, at the right time, in the right order, is

surprisingly difficult, even when you know all of the basic principles.

“nobody gives a hoot about profit” Russel L. Ackoff’s

words

https://deming.org/nobody-gives-a-hoot-about-profit/
https://www.youtube.com/watch?v=bu7JMAQggfo
https://www.youtube.com/watch?v=bu7JMAQggfo

The standard way to counteract this is through a process or a system.

You make sure that research and end-user benefit is ensured, some‐

how, as a part of the process. You don’t just do stuff that the organisa‐

tion thinks it needs. You find out what it truly needs.

The way we usually do this, which rarely works, is to do a bunch of

‘research,’ read a lot that we personally find interesting, interview a

few potential stakeholders, and then set out to make what we think is

the right solution.

This is the famous waterfall process in spirit, if not in fact. It doesn’t

matter if you’re using all the agile processes, or if you’re scrumming

up the place left, right and centre. If you’ve decided exactly what

you’re going to do in advance, before any of your work encounters a

real end-user, you are following the spirit of the waterfall process.

You decide what to do based on a few interviews and surveys.

You make some headway towards implementing it and then de‐

cide to test it or do more research because that smells like agile,

design thinking, or something.

The results are a bit all over the place but do tell you that some‐

thing isn’t quite working.

So you adjust what you had made.

Test again.

And the loop continues until you run out of money.

The problem here is that you’ve jumped headlong into what Deming

called “tampering”, which is

You think that the mistake is an error in the latest thing you did when

it was down to a faulty assumption underlying everything you’re do‐

ing—the entire project is misguided.

A/B testing mitigates this but doesn’t prevent it as it does nothing to

fix faulty assumptions. A/B testing doesn’t help you build a model or

map out what it is that the end-user needs. It can help you find a local

1.

2.

3.

4.

5.

6.

“taking action based on the belief that a

common cause is a special cause.”

Software Crisis 2.0

22

https://curiouscat.com/management/deming/tampering
https://curiouscat.com/management/deming/tampering

optimum for a variety of issues but can’t help you find an overall dir‐

ection. Because the problem is that the initial idea is always wrong in

some substantive way. Software development that obsessively focuses

on unattainable goals will always be doomed.

If you build software this way, start with an unwavering idea, altern‐

ate between testing it and A/B testing it, and ‘fix’ issues that crop up in

the last test, you only end up tampering with the initial unworkable

idea. All you accomplish is to magnify the project’s error rate until it

fails. This process will never help you discover actual needs.

At best this results in featuritis.

Something is sure to solve all difficulties

23

She flew over the ditch as though not noticing it. She

flew over it like a bird; but at the same instant Vron‐

sky, to his horror, felt that he had failed to keep up

with the mare’s pace, that he had, he did not know

how, made a fearful, unpardonable mistake, in recov‐

ering his seat in the saddle. All at once his position

had shifted and he knew that something awful had

happened.

Leo Tolstoy, Anna Karenina

Software Crisis 2.0

24

Something awful

happens

We love features.

For external-facing software, like a service or a product, you tend to get

tacked-on features for marketing to hype up. These rarely make sense and

leads to ongoing UI clutter until, like Microsoft with their ribbon toolbar,

you’re forced to try to invent completely new kinds of widgets to make the

mess even halfway usable. At least in their case, the initial product was a

sound one and remained excellent for many years. (RIP Word 5.1a. I used

that app for years.)

Features tend to result in momentary boosts to sales and attention. They

lend themselves to being measured, both by management and by review‐

ers. The negative effect of clutter and complexity is generally indirect and

can’t be traced to an individual feature and so avoids individual blame.

Adding a feature to an existing design is almost always good for your career

and rarely a benefit for the end-user.

Most software is layers of cruft, wrapped around strata of mediocre

designs and good intentions, sometimes with a sound idea at its

centre.

Not everything has to be genuinely excellent. You don’t have to be

good to succeed. Bad software can succeed and good software can fail.

If the need is great and a bad app addresses even a part of it, that can

turn into an amazing blockbuster success. This leaves you open to a

future competitor whose app isn’t bad but that’s a problem for then,

not now. In the meantime, you can bank your bonuses, pile on the

feature cruft, and leverage your luck into a higher paying position

elsewhere. And if you make a fantastic, well-designed, reliable app

that does not solve a single real problem for anybody anywhere it’s go‐

ing to fail. Miserably.

The key here is a true need. Or, if you want to be a little bit fanciful

about it, how does it make the user feel?

Software Crisis 2.0

26

There happened to him at that instant what does hap‐

pen to people when they are unexpectedly caught in

something very disgraceful. He did not succeed in ad‐

apting his face to the position in which he was placed

towards his wife by the discovery of his fault. Instead

of being hurt, denying, defending himself, begging

forgiveness, instead of remaining indifferent even—

anything would have been better than what he did do

—his face utterly involuntarily (reflex spinal action,

reflected Stepan Arkadyevitch, who was fond of

physiology)—utterly involuntarily assumed its habitu‐

al, good-humored, and therefore idiotic smile.

Leo Tolstoy, Anna Karenina

Something is sure to solve all difficulties

27

Good-humoured

idiotic smiles

Every application is judged by the user in terms of how “awesome” it

makes them.

(If that sounds like a very American way of putting it, that’s because it is.

But Kathy Sierra, in her book Badass: Making Users Awesome and her blog

, does a good job of backing that North American

style of grating hyperbole with some of the best design advice you can

find.)

Making it easy for users to solve the problem at hand is an effective way of

inspiring that feeling. If you are spending hours and effort on a feature and

you don’t know whether the user wants it and it has no obvious bearing on

the awesome factor, you are probably doing something wrong.

This is why one of the many many things you need to do to prevent disaster

is research and exposure. You need to do research that’s based on what

people do, not just what they say they do. You need for

Creating Passionate Users

exposure hours

https://headrush.typepad.com/
https://articles.uie.com/user_exposure_hours/

most of your team members. You need to make sure that your team is

healthy. You need to let people do what they know best – let the spe‐

cialists be the specialists and not just implementation monkeys for

the mediocre designs and ideas from management. Autonomy. That

sort of thing. You need to do all of these things and so many more and

you still might fail because you also need a tremendous amount of

luck.

Which is another reason why software projects fail: simple bad luck.

But, if you’re addressing a genuine need, for a sizable group of people,

whose needs you know either through research or experience, and

you figure out a way to make them feel awesome while addressing that

need…

… then your software product might not be doomed.

I say “might” because, as I noted above, almost everything is wrong

with how most software projects are managed. As the Chaos Reports

demonstrate, most projects are likely to be unsuccessful.

Something is sure to solve all difficulties

29

She took no interest in the people she knew, feeling

that nothing fresh would come of them. Her chief

mental interest in the watering-place consisted in

watching and making theories about the people she

did not know. It was characteristic of Kitty that she al‐

ways imagined everything in people in the most favor‐

able light possible, especially so in those she did not

know. And now as she made surmises as to who

people were, what were their relations to one another,

and what they were like, Kitty endowed them with the

most marvelous and noble characters, and found con‐

firmation of her idea in her observations.

Leo Tolstoy, Anna Karenina

Software Crisis 2.0

30

Finding confirmation

of our ideas in our

observations

It usually isn’t that hard to find out what people do, how they solve the

tasks at hand. It is a bit tricky.

Don’t ask them directly what they tend to do whenever they tackle a specif‐

ic task. That way you’re going to get detailed descriptions of how you’re

supposed to use those same common apps. Most of us have little awareness

of how we use these tools in practice. When asked, we often end up just re‐

citing the user manual.

We rarely remember the workarounds we use to make it work for our par‐

ticular problems. We rarely linger on the persistent issues that we keep

tackling and have been tackling for so long that the gestures have become

muscle memory. We’re remarkably good at training our muscle memory to

solve problems we encounter regularly. The thing about muscle memory is

that we don’t have to think about it that much. You aren’t going to dis‐

cover any of it in an interview.

Most importantly, we often lie, consciously or unconsciously, about

whether we’d pay for any given piece of software.

This is why field visits and exposure hours are so important. (Can be

virtual, the world is full of online spaces.) Without the understanding

of the end-user that comes from observation, your software project is

very unlikely to succeed.

But it could survive for a long, long time because our industry eco‐

nomics are broken.

So broken.

Software Crisis 2.0

32

The mare had broken her back, and it was decided to

shoot her. Vronsky could not answer questions, could

not speak to anyone. He turned, and without picking

up his cap that had fallen off, walked away from the

race course, not knowing where he was going. He felt

utterly wretched. For the first time in his life he knew

the bitterest sort of misfortune, misfortune beyond

remedy, and caused by his own fault.

Leo Tolstoy, Anna Karenina

Something is sure to solve all difficulties

33

A bitter misfortune by

our own fault

—Finally, we talk about why money and profit aren’t enough to ensure software

quality.

The economics of tech and software are fundamentally irrational.

A common issue for VC-funded startups and grant-funded not-for-profits

is that they keep funding software that has no business being in business.

If it does eventually become sustainable, let alone profitable, it’s usually

due to a monopoly or oligopoly position, attained by driving out all of the

paid competitors with a rubbish free offering, or through sheer dumb luck.

Millions of dollars will buy you many rolls of the dice.

The story of the past two decades in software is the story of solid apps being

replaced with shitty VC-funded freemium SaaS offerings. Those that don’t

get replaced lose their market to shitty OSS projects that are mostly fun‐

ded, directly or indirectly, by the same people.

These companies don’t have to worry about income, at least not at

first. They indulge their engineer’s worst instincts for fancy technolo‐

gical innovations. They jockey around dealing with office politics and

organisational power plays. They pile on features in the name of

‘product-market fit’. They interview users in random and haphazard

ways that can never give you solid ideas about their needs. They drive

their team hard in the name of growth and disregard their needs,

which leads to burnout and churn, which in turn leads to shortened

institutional memory and an inability for the organisation to retain

any actual lesson learned. They juke the stats to make their product

look like they’re growing meaningfully when what they’re dealing

with is escalating because the UX is going downhill,

fast.

They rarely examine whether their core idea, the fundamental pro‐

position they are building on, is viable, even once they start running

out of money. Pivot, as much of an industry buzzword as it is, pretty

much exclusively happens at Medium, which despite regular disrupt‐

ive business model rotations manages to always look the same, work

the same, and feel the same. They keep making small changes that

ruin their partners and disrupt the work of their end-users but noth‐

ing really changes. Software industry pivots are meaningless because

nobody has the courage for actual change.

Addressing an actual need – one that supports an actual business

model – makes up for a lot of disorganisation and inexperience.

Provided you manage to avoid getting hit by the scorched earth tactics

of a VC-funded competitor. I’ve been involved in horribly misman‐

aged projects that had stumbled upon a sound product with a solid

business model. I’ve also been involved in projects that were staffed

with talented, smart people who were great at their jobs, individually,

but who were collectively hung up on an unworkable idea that nobody

was going to pay for.

Most of the former projects are doing okay. A decent business model

gives you room to grow and time to learn. Those of the latter who are

still around won’t be for that much longer.

failure demand

Something is sure to solve all difficulties

35

https://beyondcommandandcontrol.com/failure-demand/

Neither case has much incentive to make good software. What makes

the former competitive is almost always pricing and the commodifica‐

tion of their competitors. Nothing will save a company with no viable

market.

Software Crisis 2.0

36

Levin, looking at the tiny, pitiful creature, made

strenuous efforts to discover in his heart some traces

of fatherly feeling for it. He felt nothing towards it but

disgust. But when it was undressed and he caught a

glimpse of wee, wee, little hands, little feet, saffron-

colored, with little toes, too, and positively with a

little big toe different from the rest, and when he saw

Lizaveta Petrovna closing the wide-open little hands,

as though they were soft springs, and putting them

into linen garments, such pity for the little creature

came upon him, and such terror that she would hurt

it, that he held her hand back.

Leo Tolstoy, Anna Karenina

Something is sure to solve all difficulties

37

Disgust and pity

This is why 90% of all software projects fail: even if you build your product

through small projects, one of them will fail, and odds are you don’t have

the processes in place to recover from that failure and learn from it. A

series of small projects effectively has the failure statistics of a large pro‐

ject. Our industry economics and dynamics offer little incentive to recover

from these failures.

90% is almost certainly still the number and the popularity of short sprints

is little more than an industry-wide tendency to . Everything

is successful until you run out of money and turn off the lights.

—Everything was great right up until it wasn’t

There are dozens of different kinds of processes and methods that work

when it comes to software development. Several of those work when

you’re making a product. Several more work when you’re making an in‐

ternal service. Quite a few work when you’re making an external service.

juke the stats

https://www.youtube.com/watch?v=_ogxZxu6cjM

There is no one true way, , except agreement and dis‐

agreement. Those who need to work together need to be on the same

page. Those who don’t need to be autonomous. You need to figure out

ways to coordinate the two, discover differences, and settle them.

Everybody needs to exist in both states simultaneously depending on

context and relationship. Autonomy means that team members need

to be empowered

.

Tech industry management culture is allergic to any form of

autonomy. It doesn’t matter how effective it is, how well it’s proven to

work in research, how many successful products get their start with

autonomous development teams, autonomy is a fundamental threat

to authoritarian culture.

Authoritarian doesn’t mean that everybody who has ever worked in

management is a pseudo-fascist or prone to violence. Nor does it

mean that they are all xenophobic or racist. (Though some are, to be

fair.)

That our management culture is authoritarian means that it’s built on

the belief that authority is inherently right and that authority makes it

right. That the hierarchy is more important than facts—decisions are

correct because they were made by somebody in authority. Making

authority look weak or foolish is a bigger crime than being a weak or

foolish manager.

I’ve never encountered an English-language organisation in my life

that wasn’t fundamentally authoritarian. I’ve seen a few Nordic or‐

ganisations that I’d call egalitarian (which would be the antonym to

authoritarian in this context). Never an English-language one.

I’ve heard of egalitarian English-language companies but have never

witnessed one or spoken directly to a person working for one. I’m

sure they exist, but many of the companies who have presented them‐

selves as egalitarian in the past . There is cause

to be sceptical.

no silver bullet

and it’s the most important thing in modern soft‐

ware development

turned out to be not so

Something is sure to solve all difficulties

39

http://worrydream.com/refs/Brooks-NoSilverBullet.pdf
https://svpg.com/the-most-important-thing/
https://svpg.com/the-most-important-thing/
https://www.baldurbjarnason.com/2021/you-are-what-you-do/

Here’s a test.

A manager has slaved over a new plan for the project.

They meet with their team and tell them what the new plan for

success is going forward, describe in detail the idea that is going

to direct their next few months.

One of the employees responds in that meeting by saying that it

doesn’t sound like a good idea, based on what they know of the

problems ahead, and, as described, seems likely to fail.

Should the manager:

Reprimand that employee (in private, to ‘preserve morale’).

Whatever concerns they have about the plan, no matter how val‐

id, should have been raised through proper channels. Other‐

wise, you’re disrupting the team and the process and that’s

worse than letting a single bad plan go through.

Apologise to the team. The manager made a mistake in deciding

on a plan without discussing it with the team first and getting a

rough consensus in advance on what was the best course of ac‐

tion.

If your first language is English, odds are you chose option 1 even

though it dramatically increases the odds of failure. A solid propor‐

tion of English-speaking managers would still choose option 1 even

knowing it made the plan’s failure a near-certainty. Their goal isn’t to

successfully execute the plan but to control because control is success

for a manager in these organisations.

If you’ve read any management theory then authoritarian—command

and control—management is almost always labelled as obsolete and

outdated. Especially in product development where team autonomy is

widely considered to be key to a successful product.

If you’ve worked in a software company you also know that command

and control is the status quo, even when they’ve wrapped it in an

‘agile’ flag. They’ve just gotten better at masking it with brainstorm‐

ing meetings, discussion formats, Slack emoticons, performative

•

•

•

1.

2.

Software Crisis 2.0

40

‘wokeness’ (that never leads to actual ‘woke’ policies) and chirpy HR

lackeys. The mask is just a mask.

When it comes down to it, you’re still getting death march develop‐

ment implementing top-down dictated features and designs, ulti‐

mately based on managerial whim, justified after the fact with cherry-

picked data. Dissenters are still punished.

Software companies coast on money. Either through excessive funding,

where VCs and other funds throw good money after bad or through

high margins after an initial lucky break. Which is great for investors

and executives but makes for a miserable industry to work in.

You’d think that a company that’s profitable despite having crap soft‐

ware would attract a ton of successful competitors. Except, as I’ve

been trying to tell you, making good software is hard even when

you’re doing everything right. Almost nobody in the industry is inter‐

ested in doing anything right.

(It’s amazing that in all of the papers economists write trying to figure

out the they rarely seem to consider ‘maybe it’s just

that all software is bad, we’re bad at making software, and we should

feel bad,’ as a possible explanation.)

Pick a tech startup founder at random. Odds are that they’re in it for

the feeling of power, not to make good software, a successful busi‐

ness, or even to make a profit. The worst want to be idolised and don’t

care how much of other people’s money they waste to that end.

The software industry just burns money. Most of the startups never

turn a profit. Many of the big companies (coughUbercough) never turn

a profit. Even a few of the biggest companies on the planet manage

not to turn a profit except on rare occasions (coughAmazoncough).

Those that do mint money, like Apple, Facebook or Google, are profit‐

ing through hardware or advertising while making atrocious soft‐

ware. Even when there is profit, that’s usually because the monopoly

Solow Paradox

Something is sure to solve all difficulties

41

https://en.wikipedia.org/wiki/Productivity_paradox

or oligopoly profits are just so goddamn huge that there is no way to

spend it all, now matter how badly you mismanage everything.

Startups are the absolute worst at this.

People don’t get into the startup racket for constructive reasons. Half

of them resemble cults more than they do companies. They certainly

aren’t trying to make good software.

Shouldn’t that be the goal? If we’re supposed to make software that’s

valueable, not just on-time, on-budget, and to requirements, then

doesn’t that mean that we need to aim higher? Much higher?

Software Crisis 2.0

42

So how do you

make good

software?

Good software isn’t a precondition for success. Otherwise, we’d have

more of it. Good software can be made well, every release successful,

and still fail because the market size simply isn’t big enough. Good

software can be driven out of existence by a cluttered VC-funded

freemium alternative or a half-baked shoddy OSS version. Free beats

‘good’ every time. Good software can fail if it’s marketed incorrectly,

priced too high, or doesn’t run on an appropriate platform.

Good, successful software is rare because it’s hard. What’s more, I

don’t truly know how to make genuinely good software. I have ideas

—theories on how it’s done based on research, study, and observation

—but I’ve never had a chance to put them all into practice. I’ve, so far,

only worked on other people’s software projects and other people’s

ideas, using other people’s processes.

The following are just guesses. Theories that I hope to try out at some

point. Remember, I’m talking to myself here as much as I’m talking to

you and I guarantee you that I’m wrong about a lot of this.

Software Crisis 2.0

44

Taste

First, I think you need to develop a taste for good software. You need to be‐

have like a painter, writer, or filmmaker and study your field. I’m biased

here as I didn’t study computer science back in the day but interactive me‐

dia at an art, media, and design faculty. I was raised in an arty media

household. Had one foot in TV and radio when I was a teen. My holiday

family gatherings have multiple journalists, authors, and artists attending.

What I’m trying to say is that, because of my background, when it comes to

creative work I’m a firm believer in the traditional kind of discourse and

structure of film, tv, radio, and publishing.

If your job is to make something, you study the field, its history and cur‐

rent practice. That’s what you do in publishing. That’s what you do in radio.

That’s what you do in TV.

That’s what I think you should be doing in software. That’s what I tell my‐

self as I obsess over old apps, collect new ones, and pore over screenshots

and screencasts.

I don’t care if you’re a backend developer, front end developer,

product manager, designer, or Swift/Java engineer, you need to col‐

lect good software, try it, experience it, get to know what well-made

feels like. You think a boom operator on a film set isn’t a film enthusiast?

Half of them, easy, can recite the best lines from Coppola’s The Conver‐

saton from memory.

You need to develop a curiosity for classic software, patterns, tropes,

and conventions that used to be the norm but have fallen out of

vogue. Like a filmmaker studying Eisenstein or a novelist studying

Tolstoy, you need to become familiar with the great works of your

field: great Mac Classic app, early iOS apps, the peaks of indie Mac OS

X, and the die-hards who survived the death of OpenStep. Then get

back to the bad software that you’re forced to use to figure out which

bits of it are praiseworthy. Imagine how you’d redesign a piece of

steaming garbage like Google Docs into something pleasant that mar‐

ried its top-notch engineering with considered UX design. Argue with

others about how to fix it. Debate.

Software development is a creative field. It has more similarities with

filmmaking than it does with bridge-building. Develop a taste for in‐

teresting software and then talk to others about them. Discuss, dis‐

agree, find common ground and start again.

Software Crisis 2.0

46

Find or build small

teams

Once you become more familiar with software history you’ll notice it. It’s

quite obvious after a bit of study, even though it’s counter-intuitive to those

who are a product of the big tech/startup scene. It can take a moment for it

to click.

Most of the truly great software in computing history was created by

small teams. Many of them were even made by individuals or duos.

Some of those teams grew later on, but even those are a solid minority.

Most of the time, if a classic app or service was any good, it was, at least ini‐

tially, made, developed and maintained by a Small-to-Medium-sized-Busi‐

ness.

It’s a mistake to adopt the startup mentality of believing that you have to

go from a good idea to a multinational corporation in the space of a few

years. That’s a risky way to make money if you can pull it off, but even

when successful it has led the software to suffer.

Do you truly believe that Dropbox is a better experience now than it was in

2009?

There are exceptions, of course, but you have a better chance of find‐

ing and joining (or even founding) the next Panic or Omni Group than

the next Apple. There might not even be a new Apple. Even Apple isn’t

Apple anymore as their software efforts as a whole have been declin‐

ing steadily for the past decade. Now in the era of specialised Soft‐

ware-as-a-Service, there are many more Small-to-Medium-sized soft‐

ware companies around than you’d think.

Software Crisis 2.0

48

Start simple

A small team generally also means that there is an upper limit to how com‐

plex you can make the app. But you also always need to start simple:

A complex system that works is invariably found to have

evolved from a simple system that worked. A complex sys‐

tem designed from scratch never works and cannot be

patched up to make it work. You have to start over with a

working simple system.

John Gall, The Systems Bible

The starting point of the app needs to be something extremely simple that

also happens to work. I’ve lost count of how many projects I’ve been in‐

volved with have made this mistake. If you start with a complex idea, odds

are that you are going to fail miserably.

This presents a problem if your goal is to ‘transform the world’ or become

famous, infamous, or noted in some way. As we established above, that

sort of motivation rarely leads to anything but awful software, let alone

anything good.

You can change small bits of the world. Like that bit over there. Make

that corner nice.

What seems to work for many is to build an app that helps people out

with one thing, preferably one work-related thing because we all like

to get paid.

Software Crisis 2.0

50

Be the right kind of

ambitious

If you have to start simple and stay small (to medium) that means you can’t

be ambitious in the traditional technology-will-take-over-the-world sense.

What you can do is to be ambitious in how you combine the elements you

have.

Nintendo is one company that does this regularly. They build innovative

consoles and games, mostly using well-established technologies. Gunpei

Yokoi, a game designer who worked for Nintendo for a very long time,

called it “lateral thinking with seasoned technology”.

(It’s variously translated as seasoned or withered. I prefer seasoned.)

Use technology that’s well tested, robust, and has known characteristics

and then combine them in interesting designs.

Another way to describe it (and probably the more common, less poet‐

ic North American way) is that every project has an innovation budget:

the amount of ‘new’ you can safely handle with your resources

without increasing the risk of project failure. Most software compan‐

ies blow this budget out of the water and then keep on piling until it’s

a miracle they even manage to get started in the first place.

The managers that like to think of themselves as sensible try to pick

and choose technologies—balance the budget.

The Nintendo way would be to spend the entire innovation budget on

design. Use only old, unexciting technology. Make the designs inter‐

esting.

‘Innovation’ here is relative. If your team has been using AWS

Lambdas and Step functions for a few years, using Postgres would

qualify as an ‘innovation’. If all you know is Postgres, then even a

little bit of DynamoDB takes a chunk out of your innovation budget.

Use familiar technology whose shape and characteristics you know.

Be inventive in your designs. Be interesting.

Software Crisis 2.0

52

Know your customers

It helps if you have something in common with them. What I wrote above

about exposure hours applies here. As :

The solution? Exposure hours. The number of hours each team member

is exposed directly to real users interacting with the team’s designs or

the team’s competitor’s designs. There is a direct correlation between

this exposure and the improvements we see in the designs that team

produces.

If this sounds like hard work, impossible to accomplish during a pandem‐

ic, do remember that the observation can be virtual by scouring forums

and the like (a technique) or it can simply be of your

own environment.

This is why a lot of the software that’s pretty-good-actually are development

tools. Building software for yourself is if done thoughtfully, building on

countless ‘exposure hours’. You still need to do research but it’s a big head‐

start.

Jared Spool says

pioneered by Amy Hoy

https://articles.uie.com/user_exposure_hours/
https://stackingthebricks.com/video-sales-safari-in-action/

Effectual reasoning

If you look through the ‘failure’ section of this essay, one of the biggest

causes of software project failure is top-down management. Deciding in

advance what to do, even before you do the research. Deciding the plan in

advance, before you get a proper sense of the work. Deciding in advance

what all of your team members should do, before you even discuss it with

them, or before any of you has a real understanding of the situation or the

tasks ahead.

Saras D. Sarasvathy, who has made a point of studying entrepreneurship,

calls this predictive or causal reasoning in her paper

Causal rationality begins with a pre-determined goal and a given set of

means, and seeks to identify the optimal – fastest, cheapest, most effi‐

cient, etc. – alternative to achieve the given goal. The make-vs.-buy de‐

cision in production, or choosing the target market with the highest

potential return in marketing, or picking a portfolio with the lowest

risk in finance, or even hiring the best person for the job in human re‐

sources management, are all examples of problems of causal reasoning.

A more interesting variation of causal reasoning involves the creation

of additional alternatives to achieve the given goal. This form of creat‐

ive causal reasoning is often used in strategic thinking.

“What makes entre‐

preneurs entrepreneurial?”

https://www.effectuation.org/sites/default/files/research_papers/what-makes-entrepreneurs-entrepreneurial-sarasvathy_0.pdf
https://www.effectuation.org/sites/default/files/research_papers/what-makes-entrepreneurs-entrepreneurial-sarasvathy_0.pdf

This type of thinking begins with a specific goal and then you proceed

stepwise towards that goal, no matter how impractical or undesirable

that goal is later revealed to be.

Entrepreneurial thinking or “effectual reasoning” as Dr Sarasvathy

calls it:

Effectual reasoning, however, does not begin with a specific goal.

Instead, it begins with a given set of means and allows goals to

emerge contingently over time from the varied imagination and

diverse aspirations of the founders and the people they interact

with. While causal thinkers are like great generals seeking to con‐

quer fertile lands (Genghis Khan conquering two thirds of the

known world), effectual thinkers are like explorers setting out on

voyages into uncharted waters (Columbus discovering the new

world).

Causal: how can we implement this specific solution to this specific

problem?

Effectual: what problems can we solve with the skills and resources

we have at hand?

It’s about finding something you’re likely to accomplish with your

current resources. As opposed to attempting to do something and

then finding out whether you can accomplish it or not.

This may well mean that the right thing to do is something other than

software: books, courses, services, talks, or even hybrid semi-auto‐

mated services.

Don’t be afraid to not make software

At least to begin with.

So how do you make good software?

55

Dr Sarasvathy outlines a few other principles that she’s found to be

common among entrepreneurs:

Affordable loss. The risk calculation is inverted. Instead of trying

to calculate the odds of success, you calculate the impact of total

failure. “If we try this and fail, how much will we lose? Can we

afford that? What’s the potential upside?”. A lot of the time, de‐

cisions that are seen as risky in normal organisations are not

risky from an effectuation perspective: odds might be unknow‐

able or extremely low, but the cost is also low and upside high.

Strategic partnerships. That is, you tend to partner without doing

extensive competitive analysis. This is the reason why a lot of en‐

trepreneurs tend to go heavy on open source and open source

collaboration.

Leverage contingencies. In most organisations, anything that’s

surprising is a threat. In entrepreneurial thinking, anything

that’s surprising is an opportunity. If your user base turns out to

be very different from what you thought, lean into it. If one as‐

pect of your app works wonderfully while the rest is ignored,

turn that into the product. In Dr Sarasvathy’s words “surprises,

whether good or bad, can be used as inputs into the new venture cre‐

ation process.”

A five-year plan is never going to work for new software. You can’t ap‐

ply top-down, causal reasoning to the creation of new software. This

is also why command-and-control management styles are especially

bad under these circumstances, no matter how much of a norm that is

in startups or enterprises today.

1.

2.

3.

Software Crisis 2.0

56

“This new feeling has not changed me, has not made

me happy and enlightened all of a sudden, as I had

dreamed, just like the feeling for my child. There was

no surprise in this either. Faith—or not faith—I don’t

know what it is—but this feeling has come just as im‐

perceptibly through suffering, and has taken firm root

in my soul.

“I shall go on in the same way, losing my temper with

Ivan the coachman, falling into angry discussions, ex‐

pressing my opinions tactlessly; there will be still the

same wall between the holy of holies of my soul and

other people, even my wife; I shall still go on scolding

her for my own terror, and being remorseful for it; I

shall still be as unable to understand with my reason

why I pray, and I shall still go on praying; but my life

now, my whole life apart from anything that can hap‐

pen to me, every minute of it is no more meaningless,

as it was before, but it has the positive meaning of

goodness, which I have the power to put into it.”

Leo Tolstoy, Anna Karenina

So how do you make good software?

57

Going on in the

same way

Towards the beginning of this essay I wrote that we don’t know the

answers to our fields most basic questions. We don’t know the an‐

swers as a field but we generally do know as individuals. Deming’s

ideas and have been broadly uncon‐

troversial for thirty years. When Marty Cagan argues for

 he is basic that on what many already accept as

best practices. Dr Sarasvathy’s effectual reasoning feels like common

sense to most entrepreneurs. We know that software reliability is best

served by a judicious mixture of unit and integrated tests. Types help

under some circumstances. We know that ,

based on not surveys, is the best way to create software that

delivers value. We know that software is iterative and ongoing and

best developed in as small bites as is possible. We know that software

reliability and usability declines fast as it grows in size and scope. In‐

creased very quickly ceases to result in a positive return on invest‐

ment. We know that many of the problems we’re facing have been

solved before through designs that we can study and learn from.

We know all of these things but we don’t apply them as a field.

I’m tired of this treadmill. I’m not just tired of my part in this

charade, where half the projects I work on just don’t pan out in any

meaningful way, but I’m also tired of your part in it. I’m tired of bad

software. I’m tired of having to fight my way through app or OS up‐

dates to recover destroyed productivity. I’m tired of plodding through

awful forms and awful websites. I’m tired of the sheer instability and

bugginess of everything. I have a high end workstation and most of the

apps are harder to use and feel slower than the apps I was using fifteen

years ago on a budget Mac Mini G4. For example, I haven’t found a

browser-OS combination yet where it takes less than ten seconds to

save a group of tabs as bookmarks on a powerful machine and I’ve

tried them all.

I’m tired of our industry’s constant failure to cover the basics.

I’m also tired of our lack of art, of our faddishness, uniform aesthet‐

ics, and complete lack of polish. I would like us all to do better. I’m

the germ theory of management

autonomous

and empowered teams

user-oriented designs

research

Going on in the same way

59

https://beyondcommandandcontrol.com/wp-content/uploads/2015/06/the-germ-theory-of-management.pdf
https://svpg.com/inspired-and-empowered/
https://svpg.com/inspired-and-empowered/
https://www.amazon.com/About-Face-Essentials-Interaction-Design-dp-1118766571/dp/1118766571/ref=dp_ob_title_bk
https://abookapart.com/products/just-enough-research

not expecting us, or me, to start making amazing software after dec‐

ades of mediocrity. That’s unreasonable. And you can’t get rid of bad

software entirely. Making something that’s bad is a part of the learn‐

ing process. We both need to make it and need to discuss it when it

happens if we are to be able to improve ourselves. Sometimes things

just don’t work out.

If you ask somebody who has a decade of relevant production experi‐

ence to make a two-hour radio documentary on a subject, if you give

them the resources that they’re used to, their odds of success are not

10%, 20%, 30%, or even 40%. Success isn’t guaranteed but you can gen‐

erally count on a decent listen delivered on time and on budget. That’s

what a decade of experience is supposed to deliver.

Bridges don’t collapse while being built 40% or even 10% of the

time.

Ask a similarly experienced software developer to make a project

that’s similar in scope and budget and you’re solidly in the grand/

large project danger zone in the Chaos Report tables. A 30% success

rate would be amazing. If it’s on time or on budget, it won’t also

match the requirements. If it matches requirements then those re‐

quirements are probably wrong and it doesn’t deliver value. If it deliv‐

ers value, it probably went over budget or over time, harming its re‐

turn on investment.

Software development manages somehow to be less reliable than both

the creative industries and engineering while preserving many of the

liabilities of both.

We have to do better. We need to have aspirations of quality, not dis‐

ruption or world domination.

I have to do better.

Software Crisis 2.0

60

In Anna Karenina we follow the trials of a number of characters.

Vronsky, the narcissistic user who ruins lives. Anna Karenina who

destroys herself through her naivity and immaturity. Alexei Alexan‐

drovich Karenin, her husband, who supports the status quo, the sys‐

tem as it is, even as it harms him and who is as much to blame for

what happens. Kitty Alexandrovna Shcherbatskaya who naively ro‐

manticises the horrifying aristocratic society of Tsarist Russia.

The final words of Anna Karenina are Levin’s, the character who most

closely matches Tolstoy himself in position and outlook. After bat‐

tling depression and doubt throughout the story, attempting to im‐

prove the world around him through both grand gestures and hard

work, he finally realises that certainty is impossible—he might not

even be able to change the way he feels, works, or behaves, let alone

the world around him. What he can change is his intent, his will to‐

wards good, and the meaning he puts into the tasks of his life.

Given how rare good software is in the world, the ability to deliver it is

probably down to luck.

Probably. Not certainly.

I have to hope that the substance of success—the ability to create great

software—comes from understanding and effort, not from the vagar‐

ies of fate. A lot of it is likely to require an attitude change or change in

reasoning. Some of it is down to trial and error. We can put in the ef‐

fort.

We still might fail, but we can still put the ‘positive meaning of good‐

ness’ into our work.

Going on in the same way

61

	Software Crisis 2.0
	The First Software Crisis
	Are Things Improving?
	The Chaos Report
	Something is sure to solve all difficulties
	Shooting without a hope of hitting
	The realization of desires
	Something awful happens
	Good-humoured idiotic smiles
	Finding confirmation of our ideas in our observations
	A bitter misfortune by our own fault
	Disgust and pity

	So how do you make good software?
	Taste
	Find or build small teams
	Start simple
	Be the right kind of ambitious
	Know your customers
	Effectual reasoning

	Going on in the same way

