
The

Single-

Page-App

Morality

Play
Baldur Bjarnason

Progress in web development is meaningless if nobody can

sustain it.

I am Vice

Online debates in web and general software development are a sport.

People rarely change their minds, standards are minted in a different

room with different people, and it would be unusual for it to affect the

decisions made by any of the participants or observers.

I’ve written in the past about how conferences are

. They don’t exist to educate or enlighten but

to unify a community around shared values—which is why they are

great for networking. That is why they need a liturgical adversary;

somebody who can represent the opposing heterodoxy.

Most online debates have this same underlying purpose. You debate

with the intent not to change your mind: you participate specifically

to clarify your views through opposition. The counter-arguments of

your adversary purify your own and arm you against future attempts

to change your mind. When we get dragged into a debate with those

who fundamentally disagree with us, we are doing them the favour of

standing in for Sin and Vice in their morality play. From my 2014 post:

By providing a clear demonstration of threatening ideas from the

outside, we end up giving the orthodoxy’s ideological centre a

clearer delineation—reinforcing it. We are Vice, Folly, Death,

Prodigality, and Temptation in the morality tale. We have to

sound plausible, reasonable, and enticing for the drama to work,

but are then parodied and mocked by the context. We exist solely

to create an uncertainty that can be assuaged by the characters

Mercy, Justice, Temperance, Truth, Virtue, and Tenacity, who

bring the viewer back into the fold with convictions even stronger

than before. Everybody who sets foot on the stage is a stock char‐

acter serving a stock role that, one way or another, reinforces

what the audience considers normal.

They do it. We do it. When we argue in these debates, we aren’t per‐

forming as ourselves, but as the personification of virtue or vice, as

valued by the clashing communities. The clash clarifies and enforces

boundaries. Adversity fosters cohesion.

That these discussions and the opinions that drive them are some‐

what arbitrary doesn’t make them less true. These community bound‐

aries exist to protect the worldviews and philosophical outlooks of

those in the community.

the business equi‐

valent of morality plays

I am Vice

3

https://www.baldurbjarnason.com/2014/11/13/on-conference/
https://www.baldurbjarnason.com/2014/11/13/on-conference/

One such debate is whether the ‘one true way’ in web development—a

silver bullet if you will—is to use a Single-Page-App or not. The divide

here is ordinarily that of progress versus pragmatism.

Sometimes, those who push for Single-Page-Apps advocate for pro‐

gress, and see them as enabling new ways of making things for the

web—this is the future. Progress. Then those who oppose SPAs worry

about how good those apps will end up in practice—that most teams

won’t be able to do it well. Pragmatism. Sometimes it’s the other way

around. The Anti crowd sees SPAs as standing in the way of progress

on mobile and accessibility. The Pro crowd are performing the role of

pragmatically accepting what works best in the industry.

That these arguments are arbitrary doesn’t make them less true.

You could shorten these debates substantially as most of them boil

down to the following:

Pro: SPAs have more capabilities. They will offer substantially bet‐

ter performance for web apps that get used regularly.

Anti: In practice, most SPAs are so bad that a user would have to

use them for a thousand days, consecutively, with no breaks and

no updates before they’d be as good as even the most mediocre

multi-page-app. SPAs are evil.

Pro: That’s just hyperbole. I’m choosing not to believe you at all.

Besides, the tools are great, so it can’t be true.

I’m caricaturing both sides here. But this, in essence, is the ground

that these debates cover.

The answer here is almost always both:

It depends

It doesn’t matter as much as you’d think, because the root cause

of every bad Single-Page-App isn’t that it’s a Single-Page-App.

The technology isn’t at fault. Our ability to use technology is what’s at

fault and not just this particular one.

•

•

The Single-Page-App Morality Play

4

I am Folly

Neither Using nor Avoiding a Single-Page-App is a Silver Bullet.

The pro-Single-Page-App (SPA) crowd keeps underestimating just how

bad the median Single-Page-App is. That’s because the Pro crowd un‐

derestimates just how bad most management is.

The Anti crowd keeps underestimating the benefits of a well-behaved

app. That’s because they don’t appreciate just how much can be ac‐

complished with modern SPA tools and a well-managed team. They

mistake the attributes of bad management as essential qualities of

Single-Page-Apps and the frameworks that enable them.

SPAs are both amazing and horrible. Sometimes in the same project.

The web is large; it contains multitudes.

The thing both the Pros and the Antis have in common? They don’t

consider management to be a factor in a technical decision when it

very much is. You need to gauge the quality of a team’s management

first. Before you make any recommendations as to tools, stack, or

technology. Same team, same budget, same goals, with the same

scope will have entirely different capabilities depending on the man‐

agement style. That will change all of your recommendations.

You can dramatically change the effective scope and a team’s real-

world productivity just with different management styles.

That said.

There is no silver bullet, remember?

The Single-Page-App Morality Play

6

http://worrydream.com/refs/Brooks-NoSilverBullet.pdf

I am Temptation

Generally, the delta between a mediocre Single-Page-App and a me‐

diocre Multi-Page-App (i.e. a traditional server-rendered site) is usu‐

ally massive, especially if you are targeting mobile devices. Given the

same end goal and resources, most teams and managers will do a

much better job of reaching their goals if they use a Multi-Page-App

instead of a Single-Page-App. You can blame the tools, the browser

landscape, developer training, or management, but that’s just how it

tends to pan out in practice.

I keep seeing Single-Page-Apps with huge JS files that only, in terms of

concrete User Experience (UX) benefits, deliver client-side validation

of forms plus analytics. Apps rarely leverage the potential of a Single-

Page-App. It’s still just the same ‘click, wait for load’ navigation cycle.

Same as the one you get with Multi-Page-Apps. Except buggier and

with a much slower initial loading time.

When you look at performance, cross-platform and mobile support,

reliability, and accessibility, nearly every Single-Page-App you can

find in the wild is a failure on multiple fronts.

Replacing those with even a mediocre Multi-Page-App is generally go‐

ing to be a substantial win. You usually see improvements on all of the

issues mentioned above. You get the same general UX except with

more reliable loading, history management, and loading features—

provided by the browser.

You don’t even have to go all the way. Hybrid systems, such as

let you gain some of the benefits of simplification (routing and tem‐

plate rendering is managed by the server) while offering the naviga‐

tion and UX benefits of a Single-Page-App. Other frameworks, such as

SvelteKit, can also offer the same benefit through configuration,

provided you can resist the temptation to change that configuration

and go full-on Single-Page-App.

The problem here isn’t the Single-Page-App or the hybrids. That’s the

mistake that both the Pro and Anti crowds make in these debates. The

Antis look at the above situation and think the problem is either the

SPA or that the SPA tooling is bad. The Pros assume that future app

‘goodness’ is achievable through iteration and progress.

Hotwire

The Single-Page-App Morality Play

8

https://hotwire.dev/

Neither is true. The problem is that these teams are badly managed

and are incapable of matching the scope of their project to the re‐

sources they can bring to bear on it.

I am Temptation

9

I am Gluttony

The problem is management.

It is a management problem. Truly.

The Multi-Page-App forces the team to narrow the scope to a level

they can handle. It puts a hard limit on their technological aspira‐

tions. Mandating a traditional Multi-Page-App under the auspices of

performance, accessibility, or Search-Engine-Optimisation is a face-

saving way to force the hand of management to be more realistic

about what their teams can accomplish. When we can accomplish the

same by advocating for a specific Single-Page-App toolkit or frame‐

work, that’s what most of us nominally on the ‘Anti’ side do. I regu‐

larly advocate for Svelte when I think the team can handle its long

term implications in terms of complexity. (That might change as

Svelte adds more features.)

The problem with Single-Page-App frameworks, even the ones like

SvelteKit who could claim to be more Hybrid than just SPA, is that

they are very, very eager to enable ‘scale’ of any sort. Features, app

size, code complexity, integrations, etc. They are desperate to make

sure that you can keep using their framework if you become a mythic‐

al ‘unicorn’ startup and your project grows into the next Facebook. So

they put a lot of hard work into making sure that there is no upper

limit to the scope of the app you can make with them.

Which, when they present it as ‘scale’, sounds like a good thing. But

it’s absolutely a bad thing when you’re in an industry that’s as mis‐

managed as ours. We can’t handle complexity. Having no upper limit

to it is extremely bad.

This is one of the reasons why the set of libraries from Base‐

camp was* so interesting. Being a hybrid system it offers many of the

benefits of both approaches But in addition, their approach means

that they have hard upper limits to what you can accomplish with

them, which most in the Pro camp see as a huge flaw. But, along with

Rails integration, it’s a boon for the productivity of most teams. The

complexity you get, you can manage, and your future complexity is

more limited than what you’d get with the more ‘traditional’ API plus

SPA approach. Because of this, there are more specialised small-to-

mid-sized web services and apps out there running on Rails than

many of us appreciate, ranging from intranets to institutional ser‐

vices, to medium-sized Software-as-a-Service businesses.

Hotwire

I am Gluttony

11

https://hotwired.dev/

(* I say ‘was’ because the instability of Basecamp’s management and the

massive turnover of the team working on Stimulus and Turbo makes me

wary of using Hotwire on a project. But given how popular Rails is, that’s

probably me being overcautious. The principles they describe in their

books, such as Shape Up, are still sound. The problem, as many have poin‐

ted out, was that they didn’t follow through in practice on what they

wrote.)

The Single-Page-App Morality Play

12

I am Avarice

Single-Page-Apps can be amazing.

You can make a great Single-Page-App with a User Experience that a

traditional site will never be able to close to matching. But that rarely

happens. This industry is bad at what it does. Most apps are misman‐

aged and under-resourced for their given scope. We need tools that ac‐

cept the reality of bad management.

I tried to highlight in my essay just how bad the

situation is for most software development teams. If anything web de‐

velopment has it worse. Most managers can’t, or aren’t allowed, to set

the scope of their work to the limits imposed by available resources.

They default to specific Single-Page-App frameworks no matter what

the actual needs of the business are and no matter what their de‐

veloper team capabilities are.

This is the norm. We keep talking about web development under the

assumption that every manager is of the type that studies best man‐

agement practices, reads all of the clever blogs, listens to all of the

smart podcasts, and then follows through by putting it all into prac‐

tice. But those managers aren’t all that common. Even the great man‐

agers that do exist have to answer to people who favour control over

good management, which in tech is almost every executive you can

find.

Most managers in or adjacent to web development are, to put it

plainly, not good at their jobs or aren’t allowed to do their jobs well.

We’ve known what good management looks like from anywhere

between the 60s to the early 90s, depending on the country, field, and

industry. Software isn’t all of a sudden going to get good management

after decades of preferring control over effectiveness.

It doesn’t work that well.

Bad management is what hinders progress on the web, not

.

As developers, we need to operate under the assumption that good

management is the exception, not the norm. Multi-Page-Apps and hy‐

Software Crisis 2.0

We’ve de‐

veloped entire software development methodologies whose primary

purpose is to reduce the harm done by bad management.

‘because

the tools for creating MPAs historically let non-expert developers do

less damage’

The Single-Page-App Morality Play

14

https://www.baldurbjarnason.com/2021/software-crisis-2/
https://doriantaylor.com/agile-as-trauma
https://doriantaylor.com/agile-as-trauma
https://doriantaylor.com/agile-as-trauma
https://twitter.com/Rich_Harris/status/1433198215495553029
https://twitter.com/Rich_Harris/status/1433198215495553029
https://twitter.com/Rich_Harris/status/1433198215495553029

brid frameworks let under-resourced, mismanaged developer teams

deliver reliable and safe code. That should not be dismissed lightly.

A Multi-Page-App forces your team to reduce the project’s scope and

concentrate on in-page interactions. They have less state management

which most have absolutely no resources to handle. And they’re easier

to test.

I am Avarice

15

I am Vanity

Why should great teams suffer?

Some teams do have good management. Great teams and good man‐

agers do exist. If you’re on a team like that, stick with it for as long as

you can. A great team will choose the right tool for the job. Sometimes

that will be something like or . Sometimes that will

be or . Sometimes it will be something like . Some‐

times it’ll just be a thin layer of standard JS. Or a thick one. There is

no one right tool for every job. Under ideal circumstances, the team

will be able to choose what works best, based on their skills, capabilit‐

ies, timeframe, and resources.

But a team is only great if the circumstances aren’t, shall we say, less

than ideal. Most organisations make ideal circumstances impossible.

It doesn’t matter if your developers are great or if your manager is ex‐

cellent if:

Higher-level management imposes unrealistic or even im‐

possible business requirements.

The organisation enforces soul-destroying release deadlines.

Top-level executives mandate specific technical approaches be‐

cause they are trendy or in fashion or because a friend of theirs

said so.

There are no processes, or the processes keep changing.

Employee churn undermines long-term (3-6 year) organisation

cohesion and memory.

Someone in the hierarchy is a micro-manager who keeps tam‐

pering with everything that crosses their path.

The organisation allows or even tacitly promotes violence and

abuse.

The organisation has no allowance for recovery after failure or

disruption.

If there isn’t a single item in this list that applies to your current

workplace: congratulations, you are the exception.

The rest of us instead experience these situations:

SvelteKit Next.js

Lit uhtml Hotwire

•

•

•

•

•

•

•

•

I am Vanity

17

https://kit.svelte.dev/
https://nextjs.org/
https://lit.dev/
https://www.npmjs.com/package/uhtml
https://hotwired.dev/

—We have to have first-rate support for mobile phones, but the front end

also has to load a 1MB analytics script. No, we can’t skip the analytics on

mobile. Make it work.

—We need full SAML integration before the end of next month. Preferably

in only two sprints. Can you fit it in with what you’re doing? No, I don’t

have any more details than that. I think it’s a standard.

—User privacy is a core organisational value, but we also need to find a

way to get all users to opt in to let us share their usage data with our part‐

ners.

—The CEO thinks GraphQL is the future. We need to figure out a transition

plan for our existing products and clients. We might need to maintain two

complete implementations of our API in the short term. Only in the short

term, I promise. This won’t be a repeat of what happened with MongoDB.

—We need top-notch accessibility, but the founder also wants the entire

user interface designed around drag-and-drop. No, we’re not scheduling

additional time to implement keyboard control. That’s a separate feature

for the backlog.

—We need these five features for feature parity with a competitor, but the

CEO wants the interface to look ‘clean.’ Can’t we hide the buttons and wid‐

gets using hovers? Oh, and make the hovers work on mobile somehow.

—Make sure the new hire is never alone in a room with the CTO.

—Try not to touch the credit card processing system. The last person who

understood it left programming five years ago and became a waiter. We

used to contact him semi-regularly for simple updates, but then he died in

a freezer fire in a restaurant in Norway.

—The CEO likes this photo of arctic geese. Can’t you fit it on the front page

somehow? No, someplace above the fold. The CEO doesn’t scroll.

—This sprint didn’t go too well but that’s understandable under these cir‐

cumstances. We’ll make it up in a later sprint by pushing harder for a

short time.

This last example is what ruins a lot of the best teams. It is the recur‐

ring flaw that I see almost everywhere in the industry (other than the

The Single-Page-App Morality Play

18

abuse and misogyny, but that’s a separate essay entirely). That recur‐

ring flaw turns even the best dev team into a bad one:

The team is rarely given any time or resources for recovery or cooling

down.

I am Vanity

19

I am Sloth

We rarely get any resources dedicated to individual, project, or team

recovery after failure or mistakes.

Without recovery, the productivity of most teams suffers and will

continue to suffer until you give them time to recover.

This was well illustrated in the

:

Met a CTO recently who did the right (but so hard) thing. He

walked into work and sent out an email: “Today, we are deleting

all jira tickets. Stop working. Please use this time for personal

education. You have my full support” Why?

Go read the thread. The CTO gave their team months of recovery time

and afterwards, they tripled their flow of work.

They tripled the resources they could bring to bear on any given soft‐

ware project by giving themselves time to recover.

Or, put another way: the team was running at a third of its ability and

productivity because it didn’t have any cool-down periods.

Without recovery, their productivity would have continued to decline

until the project failed. No recovery leads to a death cycle.

Basecamp’s Shape Up, which is still a decent overview of good single-

team practices in software development, describes this as The Cool-

Down (inventive, no?), which is :

If we were to run six-week cycles back to back, there wouldn’t be

any time to breathe and think about what’s next. The end of a

cycle is the worst time to meet and plan because everybody is too

busy finishing projects and making last-minute decisions to ship

on time.

Therefore, after each six-week cycle, we schedule two weeks for

cool-down. This is a period with no scheduled work where we can

breathe, meet as needed, and consider what to do next.

During cool-down, programmers and designers on project teams

are free to work on whatever they want. After working hard to

ship their six-week projects, they enjoy having time that’s under

following Twitter thread by John Cut‐

ler

baked into their process

I am Sloth

21

https://twitter.com/johncutlefish/status/1429503988198625280
https://twitter.com/johncutlefish/status/1429503988198625280
https://basecamp.com/shapeup/2.2-chapter-08#cool-down

their control. They use it to fix bugs, explore new ideas, or try out

new technical possibilities.

Unfortunately, a standard cool-down period is rare in this industry.

You can tell from the software we ship.

Every great team is just one inevitable failed sprint away from a death

cycle. Most teams overestimate their long-term resources because of

this. They set the scope of their projects well beyond what they can

handle long term.

In the long run, all our teams are failed teams. It shouldn’t be that

way, but that’s the reality of our industry.

The Single-Page-App Morality Play

22

I am Tenacity

If the morality plays of old had only consisted of an Everyman charac‐

ter, surrounded by the various personifications of sin and vice, doing

their best to withstand temptation, they wouldn’t have done much to

serve their purpose. The goal was to demonstrate the values society

deemed positive by contrasting them with their opposite so the Every‐

man was surrounded and supported by the personifications of the vir‐

tues of the day. Often those were the seven virtues that opposed the

seven vices. Sometimes they were core values of the churches of the

day, such as Mercy or Penance. A slightly less common one was

Tenacity who is one of the virtues we need for the problems that

plague the web.

Because we’ve been dealing with these issues for decades. The situ‐

ation has improved ever so slightly. It’s much easier to find blogs,

communities, and books that help you learn and discover what good

management should look like. Practicing it is hard but the informa‐

tion is more accessible now than ever. Making it happen is the tricky

bit. Most organisations, especially in tech, are geared towards control

and observation over autonomy and productivity. The modern open

office is just the latest implementation of Foucault’s variation of the

: constant observation as a form of employee control. This

is the reason why, even though study after study on open offices shows

a detrimental impact on productivity, creativity, and health, none of

it makes even a dent in their adoption. This is also why we’re witness‐

ing a substantial backlash against remote work among managers and

executives.

Those of us who aren’t executives can only create pockets of good

management here and there, either in single teams or smaller busi‐

nesses, and protect them.

Once we have those pockets, then we can start to talk properly about

what technology to use best for a specific problem.

Panopticon

The Single-Page-App Morality Play

24

https://en.wikipedia.org/wiki/Panopticon#Employment_and_management

Summary

Single-Page-Apps can be fantastic. Most teams will mess them up be‐

cause most teams operate in dysfunctional organisations. Multi-Page-

Apps can also be fantastic, both in highly functional organisations

that can apply them when and where they are appropriate and in dys‐

functional ones, as they enforce a limit to project scope. It helps to

create and popularise tools that limit project complexity, such as Rails

and Hotwire or hybrid frameworks. It helps to try and create pockets

of well-managed teams. It helps to just understand that the reason

why Single-Page-Apps or Hybrid Apps suck isn’t that they suck as a

concept. Technology implemented by a dysfunctional organisation is

almost always going to suck.

I have some doubts about whether hybrid frameworks will end up be‐

ing useful complexity-limiting tools or not in the long term. The

framework drive towards complexity is strong. Many of them go out

of their way to enable a never-ending escalation of features and scope.

Most teams can’t handle an escalation like that over short or long

periods.

Until we accept that most of the industry is poorly managed and try to

figure out how to solve that problem, sites and web apps won’t get bet‐

ter, just shinier and with more bounce.

The biggest hindrance to the web’s progress isn’t non-expert de‐

velopers, tooling, libraries, Single-Page-Apps, or Multi-Page-Apps. It’s

bad management.

We’ve tried fixing management for decades. It hasn’t worked so far ex‐

cept in a few lucky corners of the industry. We don’t need tools that

provide better Developer Experiences (DX). We need tools that mitig‐

ate bad management.

Go write a thousand-package-dependency npm-installed CLI that

solves that problem and I’ll happily install it.

The Single-Page-App Morality Play

26

	The Single-Page-App Morality Play
	I am Vice
	I am Folly
	I am Temptation
	I am Gluttony
	I am Avarice
	I am Vanity
	I am Sloth
	I am Tenacity
	Summary

