
The event

listening

toolkit: five

ways to get out

of an event

handling mess

Baldur Bjarnason

—I can’t figure out how to remove this goddamn event listener?!

One of the basic tenets of life is that you’re supposed to clean up after

yourself. Life, in general, gets much easier if you get into the habit of

cleaning up as you go and don’t let things pile up (side-eyes own pile of

laundry). The same applies to coding, which is why pretty much every

course, lesson, and book on web development will tell you that you

should always remove your event listeners when you’re done with

them.

And in web development, there are a lot of event listeners, as event

handling is pretty much the job:

Build markup.

Style it.

Render it in a browser, somehow.

Respond to events.

Go back to step 1, 2, or 3. Repeat until the end user refreshes the

tab out of frustration.

That’s web development.

But, because, event listening is the job and because there are so

many events to listen to, your listeners quickly get out of hand. It’s a

common trial that binds us all together as web developers. React,

Svelte, vanilla JS: we may work with events at different levels of ab‐

straction, but our common bond is that we regularly fuck it up.

Event listeners are, still to this day, a frequent source of

. How do you remove that goddamn event listener?

Handling the same event from multiple elements can get com‐

plicated very quickly. “How can I add an event listener to every

single input field and make that listener target the correct context?”

Handling many events from a single element leads to complex

spaghetti code. (So, so many switch statements and if-elses.)

State management. Bloody state management.

It’s a lot to deal with.

1.

2.

3.

4.

5.

• memory

leaks

•

•

•

2

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Memory_Management
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Memory_Management

The way I deal with it is I have an event handling toolkit. These are

patterns and tactics I’ve used over the years in dealing with the vari‐

ous event handling messes.

The event listening toolkit: five ways to get out of an event handling mess

3

1

Don’t worry, the

browser will take

care of it all

We’ve all torn our hair out (figuratively, I hope) trying to remove

event listeners in contexts where that turns out to be surprisingly dif‐

ficult. Usually there is a simple reason behind it: it’s often bloody hard

to keep a reference to the event handling function around so you can

remove it later on.

Turns out that it isn’t always necessary.

The first tool in the event handling toolbox is to just not worry

about it. Browsers

as long as you follow certain principles and rules-of-thumb then cod‐

ing.

If you:

Need to listen to events on an element until it gets removed from

the DOM. A click handler on a button element, for example.

Know that the element’s lifecycle is managed somewhere (that

is, there isn’t enything else that’s keeping around a reference to

it). Like a button in a component-rendered form.

Attach the listener to the element directly.

Don’t reference that element in the function except via the

event.currentTarget property, which always points to the ele‐

ment the listener was attached to.

Then you don’t have to worry about it! Generally speaking.

That means that if you do this:

Then you don’t have to worry about removing the listener. The

browser’s garbage collection will take care of it.

are surprisingly good at collecting memory garbage

•

•

•

•

element.addEventListener(

 "click",

 (event) => {

 console.log("I'm attached to ", event.currentTarget);

 },

 false

);

The event listening toolkit: five ways to get out of an event handling mess

5

https://jakearchibald.com/2020/events-and-gc/

—But how do I pass in, for example, a bookingId variable to the event

listener function if I can’t refer to it? I’m working on a booking system not

an interactive textbook. This is less useful than you think.

That’s why there are five tools in this toolkit. Different circum‐

stances require different solutions and sometimes you need to carry

around references to useful variables in your listeners.

Don’t worry, the browser will take care of it all

6

2

‘Self-cleaning’

event handlers

One tactic is to use ‘self-cleaning’ event handlers, ones that remove

themselves when you no longer need them. The simplest of these is

the one and done: you need to listen to an event on an element and re‐

move it after it’s done its job.

You only need to listen to this event once then remove it. A classic use

case is waiting for a stylesheet to load or a CSS transition to end.

Thankfully, you don’t need to do anything weird or hinky to do this.

As long as you don’t have to support an ancient browser, you can use:

… and the browser will take care of removing the listener after it has

been fired once.

And if you need to support older browsers that do support ad‐

dEventListener but not the options object, read on.

If you need to support older browsers or more complex conditions

than “remove this after it fires once” then you need a slightly different

tactic:

This is a click handler that removes itself after the third time the

button has been clicked.

element.addEventListener("load", (event) =>

console.log(event), { once: true });

// First lets grab us the first button we find

// `var` because we're targeting crappy old browsers

var button = document.querySelector("button");

var count = 0;

button.addEventListener(

 "click",

 function clicker(event) {

 // I don't use += because it's incredibly easy to

 // make mistakes with it, either by not noticing

 //it while reading code or by mistyping it as `=+`

 count = count + 1;

 if (count === 3) {

 // event.currentTarget refers to the element

 // the listener was added to.

 // And because we gave the function a handy

‘Self-cleaning’ event handlers

8

Note that you can’t use an arrow function here because they are all an‐

onymous and you need the function to have a name so it can refer to

itself.

This tactic means you don’t have to keep a reference around to the

event handling function, which can get complicated very quickly.

It does use a closure to capture an external variable (count) and

keeps a reference to it for the lifetime of the fuction.Those are a fre‐

quent source of memory leaks, but it won’t cause a problem because

we’re cleaning up after ourselves. This is exactly the sort of thing

you’d be trying to avoid when you’re relying on the browser’s garbage

collection to handle things.

Remember to always use event.currentTarget to refer to the ele‐

ment whose events you are listening to and not event.target. Some‐

times the two are the same, for example when it’s a button element

with only text node children. But if the element has any markup you

might end up trying to remove an event listener from a random path

element in an embedded SVG icon and you’re back to your old

memory leaking ways.

But what if you have a more complex event handling problem?

What if you have an actual mess on your hands, not the minor untidi‐

ness of the occasional one-and-done event handler?

 // name, we can use that to refer to it even

 // while in the function's scope

 event.currentTarget.removeEventListener("click", click‐

er);

 }

 },

 false

); // The useCapture argument didn't always default to

`false` in every browser.

The event listening toolkit: five ways to get out of an event handling mess

9

3

Delegate,

delegate,

delegate

—“How can I add an event listener to every input element and make that

listener work on the correct context?”

A regular task we run into as devs is having to handle events in

multiple contexts on a page at the same time. Often people reach for

something like querySelectorAll and simply add the event listener to

potentially thousands of elements at a time, which, if your event

handler captures external variables, can very quickly lead to a serious

memory leak.

The tactic I tend to use here, and which is a perennial favourite in

web dev, is delegation.

Instead of listening on the elements that are firing the events, you

listen to a shared parent element that’s a common root to them all and

then check to see if the event.target (who’s firing the event) matches

the selector you’re expecting. Then you use the event.target refer‐

ence to that element to access its context. That way you can make sure

you’re operating in the immediate environment where the event took

place.

// Let's add a fun function that logs the number of

// radio buttons in the each button group

function logRadioSiblings(event) {

 // `.matches` lets you check if an element

 // "matches" a selector

 if (event.target.matches('input[type="radio"]')) {

 // We want a glimpse of the input's context so we

 // find the closest `fieldset` parent.

 //

 // This is assuming we wrapped all related inputs

 // in a single fieldset as we should.

 const fieldset = event.target.closest("fieldset");

 console.log(fieldset.querySelectorAll('in‐

put[type="radio"]').length);

 // Logs however many radio buttons are in the fieldset

 }

}

// Add this event listener to the `main` element.

The event listening toolkit: five ways to get out of an event handling mess

11

That last comment in the code sample is an important issue. Events

are how web apps work and it’s really easy for one component in the

hierarchy to stop an event and break things for the rest. If your form

component adds an event listener on the document root but is embed‐

ded in a tab component that stops the propogation of the click event

before it reaches the root, then your form’s handler will never see it

—even if the click event originated in the form! That’s why you should

always try to operate as close to the event sources as you can. Write

the delegate as a parent component that only concerns itself with its

child elements. Only add delegate listeners to the root element or doc‐

ument if you’re implementing a fallback behaviour that other com‐

ponents are supposed to override.

Adding the delegate event handler to the nearest relevant compon‐

ent root also simplifies the selectors you need to write for

event.target.matches.

(Shadow DOM was supposed to address this issue, amongst other

things. Which it did by making everything much more complicated,

less compatible, and broke a ton of APIs in the process, esp. ones that

involve text selection. In my experience Shadow DOM has caused

more problems than it created. It’s a very useful tool when you need it

—and when you need it you really need it—but it shouldn’t be your de‐

fault.)

The delegate pattern is extremely useful and it’s tempting to use a

single generic delegate system to handle all of your events. After all,

that’s essentially what React and jquery do. It’s a long tradition.

These frameworks delegate for a good reason but it has also caused

problems. The “no matter what I do, the event never reaches my hand‐

ler!” issue is something a lot of React devs have encountered, not just

dummies like me. It has caused so many problems that

 to address it. Instead of set‐

// You want to add the delegate listener to the closest pos‐

sible parent.

// The more 'layers' you have between the event sources and

the event listener the

// likelier it is, as the app grows, that some unrelated com‐

ponent in your hierarchy

// calls `event.stopPropagation()` on you and everything

breaks on you.

// "No matter what I do, the event never reaches my handler!"

// Been there; torn out the hair. Don't be me.

document.querySelector("main").addEventListener("change", lo‐

gRadioSibling);

they changed

how they did event delegation in React 17

Delegate, delegate, delegate

12

https://reactjs.org/blog/2020/08/10/react-v17-rc.html#changes-to-event-delegation
https://reactjs.org/blog/2020/08/10/react-v17-rc.html#changes-to-event-delegation

ting the delegate listening function on the document root, which reg‐

ularly lead to issues when you embedded two or more separate React

components on a page, it is now set on the root container React

renders to.

Essentially, they’re adding the delegate listener to the closest pos‐

sible parent element. Like I’m telling you to do. Don’t listen to me;

listen to the React team.

(There are a few reasons why some frameworks use delegate sys‐

tems for all their event handling by default but a big one is that they

need to support a much broader selection of browsers than you or I

do. Historically, event handling hasn’t exactly been uniform across

the board. Delegation lets them address all of those differences in a

single place.)

One major pitfall to overusing the delegate pattern is that it can

make memory leaks likelier. As you saw in the first solution, browsers

are pretty good at cleaning up event listeners provided you don’t cap‐

ture any external variables and attach it directly to the element that

you’re listening to. But if you’re using a delegate you risk capturing

your entire component in the event listener on an element that won’t

get garbage collected for the entire lifetime of the app (like the root

document).

There are two problems that delegates don’t help you with:

Listening to many events on a single element.

Any event handling that involves state management.

For the former problem, and occasionally the latter, I like to use the

EventListener interface.

1.

2.

The event listening toolkit: five ways to get out of an event handling mess

13

4

The

EventListener

A frequent pattern in modern web dev is to wrap up state and event

management into components. The component responds to events

and manages current state in response to those events.

This is a frequent source of memory leaks as observed by Nolan

Lawson in

Modern web app frameworks like React, Vue, and Svelte

use a component-based model. Within this model, the

most common way to introduce a memory leak is some‐

thing like this:

That’s it. That’s all it takes to introduce a memory leak. If

you call addEventListener on some global object (the win‐

dow, the <body>, etc.) and then forget to clean it up with

removeEventListener when the component is unmounted,

then you’ve created a memory leak.

The problem here is that every time you call

this.onMessage.bind(this) you get a new function, so removeEvent‐

Listener won’t work.

You can fix this in a few ways.

A wrapper function that doesn’t need binding and forwards the

call to the component.

You can add an arrow function as the class method, which is

then the listener, but those .

You could store the newly created bound function somewhere to

remove later, but that gets unweildy quickly once you start using

more components.

—See, this is why web development sucks. Best practices just don’t work

for most projects. Just let the memory leak a bit. Won’t hurt anybody.

an excellent article on, well, memory leaks.

window.addEventListener("message",

this.onMessage.bind(this));

•

•

come with a ton of their own issues

•

The event listening toolkit: five ways to get out of an event handling mess

15

https://nolanlawson.com/2020/02/19/fixing-memory-leaks-in-web-applications/
https://medium.com/@charpeni/arrow-functions-in-class-properties-might-not-be-as-great-as-we-think-3b3551c440b1

Don’t mistake common practices with best practices! My favourite

tool for this problem, for example, has been a part of the web plat‐

form—widely supported even!—for but very few

devs seem to know of its existence: the venerable

.

What if I told you that you could use the component itself, directly,

as an event listener both when adding and removing?

That’s what the platform supports!

You can add objects as event listeners as long as they have a

handleEvent method.

Any object will do. Any class instance will do. It doesn’t matter

what framework you use or transpiler you rely on, if it results in a

JavaScript object somewhere, you can give it a handleEvent and you

can use it directly as an event listener.

This solves a lot of problems because most of our frameworks,

tools, and web app architectures make it much easier to keep track of

these components than it is to manage a bunch of anonymous or

(semi-anonymous) event handling functions.

This gets really useful if you need the same component to respond

to a lot of different events. You use handleEvent to route those calls to

the appropriate method.

over twenty years

EventListener pat‐

tern

// Normally you'd be subclassing whatever component system

you're using

class MyComponent {

 handleEvent(event) {

 if (event.type === "click") {

 console.log("clicked!");

 }

 }

}

const myinstance = new MyComponent();

document.body.addEventListener("click", myinstance);

document.body.click();

// clicked!

document.body.removeEventListener("click", myinstance);

class MyComponent {

 handleEvent(event) {

 if (typeof this[`on${event.type}`] === "function") {

 this[`on${event.type}`](event);

 }

The EventListener

16

https://webreflection.medium.com/dom-handleevent-a-cross-platform-standard-since-year-2000-5bf17287fd38
https://developer.mozilla.org/en-US/docs/Web/API/EventListener
https://developer.mozilla.org/en-US/docs/Web/API/EventListener
https://developer.mozilla.org/en-US/docs/Web/API/EventListener

If you’re managing state locally in that component this lets your event

handling methods work with the component object, via this, instead

of as a captured variable and without function binding.

But what happens when you need to handle events and manage

shared state across a number of components? Y’know… the exact

thing that is the root source of so, so many bugs on the web?

 }

 onclick(event) {

 console.log("clicked!");

 }

 onchange(event) {

 console.log("changed!");

 }

}

const myinstance = new MyComponent();

document.body.addEventListener("click", myinstance);

document.body.click();

// clicked!

document.body.removeEventListener("click", myinstance);

The event listening toolkit: five ways to get out of an event handling mess

17

5

The Observable

pattern and

contract

This can get complicated.

The final pattern is also the one that I use the least, but when I

need it I really need it. I only really began to use it properly when I

first started to use Svelte, which has first class support for it. But it

predates both Svelte and its use in the JavaScript community by sev‐

eral years: . It’s one of the original

 and so dates back to the early 90s.

You can think of them as being to recurring events what promises

are to single events. It’s an abstraction that treats a stream of events as

a value.

Or, in more understandable terms: it’s an object you can subscribe

to in order to get its current and future values.

Now, of course, since this is JS and the web, you’ll note that they

couldn’t just call it “the Observer design pattern”.

Obviously.

Svelte calls them and has amazing, first class, support for

reactive component rendering based on them.

Svelte makes it really simple for you to get the current and future

values of an Observable/store. Prepend the variable name with a $ in a

component script and you’ll not only get the current value but the

script will run again for every future value of that store.

That’s really handy.

The JS community in general calls them . There’s

been an ongoing effort to add native support for them to the language

for a while but, honestly, that isn’t necessary. It was first really pop‐

ularised by .

Well, “popularised” isn’t really the right word. RXJS has a reputa‐

tion for being complex, hard to understand, and hard to use.

the Observer design pattern “Gang

of Four” design patterns

const observable = new Observable.from(["bling", "blang",

"bloom"]);

observable.subscribe((x) => {

 console.log(x);

 // Logs bling blang bloom

});

stores

‘observables’

RXJS

The event listening toolkit: five ways to get out of an event handling mess

19

https://en.wikipedia.org/wiki/Observer_pattern
https://en.wikipedia.org/wiki/Design_Patterns
https://en.wikipedia.org/wiki/Design_Patterns
https://svelte.dev/tutorial/writable-stores
https://svelte.dev/tutorial/writable-stores
https://github.com/tc39/proposal-observable
https://rxjs.dev/guide/overview

A deserved reputation, to be honest. I’ve used RXJS in a project to

great effect, it made an impossible problem possible, but getting your

head around it isn’t trivial. It’s a great tool when you need it. Which is

hopefully not that often.

In many ways RXJS was the worst thing to happen to Observables

and if Svelte hadn’t resurrected the pattern (or, more specifically, ad‐

justed their own proposed store pattern to match that of plain Ob‐

servables) it almost certainly would have just ended up being a niche

solution you’d hope you never have to use.

Thankfully, you don’t need to use RXJS to implement one. You

don’t even need to use the store tools that Svelte provides.

I find it most useful to adhere to the

 even when I’m not working in Svelte because you never

know.

Here’s a from-scratch observable implementation that uses the

browser’s built-in EventTarget class to manage the subscribers. The

Observable’s current value is always a CustomEvent. If that bothers

you then you can use Svelte’s tools to create a derived store from this

one that exposes the CustomEvent.’s detail property.

You could also mix this with the EventListener pattern if you want a

state object that listens to a number of events in your app, boils them

down to a single value, then informs its subscribers of the new value.

Svelte variant of the Observ‐

able contract

class Observable extends EventTarget {

 _value = new CustomEvent("value");

 subscribe(callback) {

 this.addEventListener("value", callback);

 return function unsubscribe() {

 this.removeEventListener("value", callback);

 };

 }

 get value() {

 return this._value;

 }

 set value(newvalue) {

 this._value = newvalue;

 this.dispatchEvent(new CustomEvent("value"), { detail:

this._value });

 }

}

The Observable pattern and contract

20

https://svelte.dev/docs#Store_contract
https://svelte.dev/docs#Store_contract

6

Of course there’s

more—so much

more

—I’m more confused now than when I started.

Observables will do that to you. That’s why they are last in the list

and why doing nothing, if you can get away with it, is first. Step back.

Focus on using the simpler methods. Only resort to the fancier ones

when you really need to.

There are a lot more approaches to event handling in the front end

that I haven’t covered. The pub/sub pattern is similar to observables

but with different use cases. I rarely use it. Even observables come in

many varieties and implementations. (Some people like to use RXJS

for everything.) You could even use if you want. These

are just the methods I prefer and am familiar with.

Involved and complex patterns and tactics should alway be your

last resort. The first rule of coding is that reading code is always more

complex than writing code. Anything that you find hard to under‐

stand when writing is going to be opaque as hell when you come back

to it later.

Always, always start with the simplest possible thing that works

and only move onto more complex solutions when you have to.

Stick to that and you’ll enjoy coding much more.

async iterators

Of course there’s more—so much more

22

https://exploringjs.com/impatient-js/ch_async-iteration.html

	The event listening toolkit: five ways to get out of an event handling mess
	Don’t worry, the browser will take care of it all
	‘Self-cleaning’ event handlers
	Delegate, delegate, delegate
	The EventListener
	The Observable pattern and contract
	Of course there’s more—so much more

